Mobile gene silencing in Arabidopsis is regulated by hydrogen peroxide

نویسندگان

  • Dacheng Liang
  • Rosemary G. White
  • Peter M. Waterhouse
چکیده

In plants and nematodes, RNAi can spread from cells from which it is initiated to other cells in the organism. The underlying mechanism controlling the mobility of RNAi signals is not known, especially in the case of plants. A genetic screen designed to recover plants impaired in the movement but not the production or effectiveness of the RNAi signal identified RCI3, which encodes a hydrogen peroxide (H2O2)-producing type III peroxidase, as a key regulator of silencing mobility in Arabidopsis thaliana. Silencing initiated in the roots of rci3 plants failed to spread into leaf tissue or floral tissue. Application of exogenous H2O2 reinstated the spread in rci3 plants and accelerated it in wild-type plants. The addition of catalase or MnO2, which breaks down H2O2, slowed the spread of silencing in wild-type plants. We propose that endogenous H2O2, under the control of peroxidases, regulates the spread of gene silencing by altering plasmodesmata permeability through remodelling of local cell wall structure, and may play a role in regulating systemic viral defence.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ROS1, a Repressor of Transcriptional Gene Silencing in Arabidopsis, Encodes a DNA Glycosylase/Lyase

Mutations in the Arabidopsis ROS1 locus cause transcriptional silencing of a transgene and a homologous endogenous gene. In the ros1 mutants, the promoter of the silenced loci is hypermethylated, which may be triggered by small RNAs produced from the transgene repeats. The transcriptional silencing in ros1 mutants can be released by the ddm1 mutation or the application of the DNA methylation in...

متن کامل

Hydrogen peroxide generation by the pepper extracellular peroxidase CaPO2 activates local and systemic cell death and defense response to bacterial pathogens.

Reactive oxygen species (ROS) are responsible for mediating cellular defense responses in plants. Controversy has existed over the origin of ROS in plant defense. We have isolated a novel extracellular peroxidase gene, CaPO2, from pepper (Capsicum annuum). Local or systemic expression of CaPO2 is induced in pepper by avirulent Xanthomonas campestris pv vesicatoria (Xcv) infection. We examined t...

متن کامل

Gene transcriptomic profile in arabidopsis thaliana mediated by radiation-induced bystander effects

Background: The in vivo radiation-induced bystander effects (RIBE) at the developmental, genetic, and epigenetic levels have been well demonstrated using model plant Arabidopsis thaliana (A. thaliana). However, the mechanisms underlying RIBE in plants are not clear, especially lacking a comprehensive knowledge about the genes and biological pathways involved in the RIBE in plants. Materials and...

متن کامل

Effect of Trehalose on the Expression of Heat Shock Protein 70 Gene in PC12 Cells Treated with Hydrogen Peroxide

Background and purpose: Oxidative stress is implicated in the pathogenesis of various diseases, including neurological disorders. In such stressful conditions, heat shock protein 70 (HSP70) protects cells, thus its pharmacological induction can be protective. The disaccharide trehalose exhibits various beneficial effects, including antioxidative effect. However, its impact on HSP70 is not obvio...

متن کامل

Effects of hydrogen peroxide-induced oxidative stress on the pattern of pro-apoptotic and anti-apoptotic genes expression during PC12 cells differentiation

Background and Objective: In neurodegenerative disorders, oxidative stress mediated by reactive oxygen species is strongly associated with increased neuronal damages that lead to apoptosis. Pro-apoptotic and anti-apoptotic gene expressions were changed during cell differentiation that affect cell viability and differentiation. This study was conducted to determine the effects of hydrogen peroxi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2014